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1 Motivation
Graphs are everywhere in real world systems like geograph-
ical networks,social networks, routing networks, biological
networks, computer networks, routing networks, geographi-
cal weather network, interaction networks, co-citation net-
works, traffic networks and knowledge graphs. A graph rep-
resents the relation between various entities. They are useful
in various tasks like node classification, link classification,
routing problems, cliques detection, community detection
and many more. These tasks have applications in recommen-
dation systems, anomaly detection, pricing models, infor-
mation retrieval using knowledge graphs, drug discovery.
Graph generative modelling [7] and graph representation
learning [2] have achieved state of art results on such tasks.
More often, such graphs are dynamic. A new entity can

get added or deleted over time. Similarly, a new relationship
can form between two entities in future or can cease to exist
as well. Even the node features can evolve over time. For
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example in a university network of faculty and students, a
role of faculty will change from assistant professor to asso-
ciate professor. Static graphs are often aggregation of such
temporal graphs observed over a time window. So, it is per-
tinent to address the temporal nature of these graphs and
model the dynamic nature in the learning process. Recent
works like jodie [3], dyrep [5], tgn [4], tgat [6] have achieved
state of the art results on future link prediction tasks in tem-
poral graphs. Similarly generative models tag-gan [9] and
dymond [8] have achieved state of art results on temporal
graph generative modelling.

2 Contribution of the thesis
Most of these works are preliminary in nature especially in
the area of temporal graph generative modelling. This prob-
lem is even more challenging than static graph generative
modelling because the number of graph for training is often
one. Moreover, we observe that the future link prediction
tasks in temporal graph representation learning involves
only predicting the future link but not the time of the link
formation. This is mainly due to the fact that temporal graph
representation learning methods lack the capacity to learn
the generative process of the underlying graph. In this thesis,
our contribution will be manifold -

• Learning a generative model of large scale temporal
graph(s). This generative model will jointly learn the
structural properties of the network as well their dy-
namism along the temporal axis. Furthermore, it will
enable efficient sampling of synthetic graph from this
learnt distribution.

• Extend this generative modelling approach to improve
upon the future link prediction state of the art results
and enable the task of predicting time of future link
formation. These tasks originate many significant ap-
plications like temporal anomaly detection, privacy
preserving data sharing and recommendations.

• Fine-tuning the above methodologies for various kinds
of temporal graphs like temporal interaction networks,
bi-partite networks, heterogeneous networks and knowl-
edge graphs. Note that in some networks, links are not
instantaneous but have start time and end time associ-
ated with them.
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3 Key challenges in temporal graph
generative models

Recent work like tag-gan [9] has proposed a methodology to
learn a generative model on temporal interaction network.
They transform the temporal graph into a static network
by combining the node identity and its interaction time as
a new node. Now on this static network, they have sam-
pled actual random walks and synthetic random walks from
this network. Finally, they trained a discriminator model to
classify between synthetic and random walks. Finally, they
assembled the synthetic walks which were mis-classified
by the discriminator into the temporal network. Dymond
[8] provides a non-neural generative method to learn the
underlying distribution. They first mine the size 3 motifs
from the temporal graph at each time stamp. For each motif,
they estimate arrival rate and inter-event time distribution
using exponential distribution. Now during temporal graph
generation, they sample the motifs based on their arrival
rate and inter-event time distribution and assemble the final
graph. We now summarize the limitations of recent works.

• Tag-gan [9] doesn’t have the upper bound on the graph
sampling complexity since in the worst case, discrimi-
nator might not mis-classify any synthetic walk. More-
over, since they are treating each node and its interac-
tion time as unique node, method is not scalable for
real worlds networks like reddit where there are over
60K unique timestamps. Moreover, graphs sampled
from tag-gan contains very high edge overlap with
input graph. This makes sampled graph redundant.

• Dymond [8] suffers from simplistic modelling capabil-
ity and expensive computation due to mining of 3 size
motifs 𝑂 (𝑁 3) at each time stamps.

• These methods also do not utilize the node features
and can sample the graph only containing the nodes
seen during training thus lacking inductive capability.

4 Preliminary work and future road map
Initial exploration of current baselines led us to realize that
major limitation of these models is to model time along with
node embeddings. Temporal point process [1] provides a
tool to model the distribution over time of next event given
the past information. TPPs are defined using a conditional
intensity functions 𝜆(𝑡). 𝜆(𝑡) denotes the expected no. of
events in infinitesimally time window [𝑡, 𝑡 + 𝑑𝑡]. Probability
distribution over the time given the past information can be
written in terms of 𝜆 as follows.

𝑝 (𝑡 | ℎ𝑡𝑛 ) = 𝜆(𝑡 | ℎ𝑡𝑛 ) exp(−
∫ 𝑡

𝑡𝑛

𝜆(𝜏 | ℎ𝑡𝑛 )𝑑𝜏) (1)

Here ℎ𝑡𝑛 denotes the past information of events till time 𝑡𝑛
and 𝑡𝑛 is the last event observed. To add the event informa-
tion, a 𝜆 is defined for each event type 𝑘 .

𝑝𝑘 (𝑡 | ℎ𝑡𝑛 ) = 𝜆𝑘 (𝑡 | ℎ𝑡𝑛 ) exp(−
∫ 𝑡

𝑡𝑛

𝜆𝑘 (𝜏 | ℎ𝑡𝑛 )𝑑𝜏) (2)

The future event and corresponding time is calculated by
computing the expected time from time distribution of each
event 𝑝𝑘 (𝑡 | ℎ𝑡𝑛 ). Corresponding to the least expected time,
future event is selected. Assuming each node in the graph is
an event, TPPs are the natural instrument for node and time
modelling. But major limitation of temporal point process is
that they are ineffective against large number of events. So,
our current focus is to scale the TPP to enable time modelling
on large scale graph (∼ 10𝐾+ nodes) by transforming nodes
into continuous domain instead ofmodelling them as discrete
events. Moreover, our near future road-map is as follows-

• Building upon the above approach to incorporate in-
ductive capability.

• Improve the future link prediction efficiency using this
approach and introduce the novel task of predicting
the time of future link between any two nodes.

• Learning temporal generative model for graphs with
attributes. This implies that the sampled graph will
need to have the attributes as well on the nodes and
edges.
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