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Abstract

The ever-growing population, their dependence on electric-
ity, and awareness of the tremendous environmental impact
of burning fossil fuels has expanded the renewable energy
portfolios across the globe. Solar energy is arising as the
most promising alternative to the fossil fuels. Among all the
techniques that transforms solar energy to electricity, solar
photovoltaic (PV) is becoming the most popular due to its
simplicity and cheap maintenance. Although the solar energy
has the advantage of being limitless and clean over conven-
tional resources, it brings along several challenges. The PV
power output is highly volatile as it depends on several me-
teorological factors, including solar irradiance, temperature,
cloud cover, rainfall, etc. Solar energy is also an intermittent
energy source as it only exists during day time. The uncer-
tain and intermittent nature of the solar energy is the main
hindrance in its reliable market penetration. The variability
of solar power output affects the grid balance system and in-
creases their operational costs. Therefore, with the increased
installation of PV plants across the globe, accurate forecast-
ing models are highly desirable for the successful integration
of solar energy to the grid and proper functioning of energy
industry. Present thesis is focused on developing advanced
machine learning techniques by employing different type of
input features to enhance the forecasting accuracy.
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1 Introduction

The era of abundance is approaching the end faster than ever.
The Earth’s resources are limited and demand a wise use to
ensure the future sustainability of life. Fossil fuels are one
of the most vital and necessary earth resources. The ever-
growing population, rapid industrialization, urbanization
and other development activities primarily depend on elec-
tricity, which has caused a substantial consumption of fossil
fuels in past few decades [10]. The recent advancements in
tools and technologies have also promoted the extraction of
energy from different renewable energy sources, including
wind, solar, geothermal, etc [13]. Solar energy has received
much attention from industrial and research communities
due to its clean and abundant nature [1]. Although solar
energy has the advantage of being limitless and clean over
conventional resources, it brings along several challenges in
reliable market penetration [6].
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Figure 1. Forecasting horizon and the time step with their
applications.

Solar energy is highly intermittent and volatile in nature,
which depends on several meteorological factors, including
solar irradiance, temperature, cloud cover, rainfall, etc. [4].
Consequently, accurate solar energy prediction is highly re-
quired for the successful integration of solar power to the
grid. Usually, solar energy industries avoid sharing of PV
data due to their privacy terms and policies [7]. Therefore,
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Figure 2. The block-diagram of the proposed framework.

researchers are more focused towards Global Horizontal Ir-
radiance (GHI) forecasting. GHI forecasting plays significant
role in various solar energy applications, such as demand
and supply balancing, fault detection, load dispatching, main-
tenance scheduling, site selection, etc as shown in Fig. 1 [2].
For this reason, the research on developing solar irradiance
forecasting models has gained significant attention from
solar industry as well as scientific community in past two
decades [3]. With the development of artificial intelligence
techniques, machine learning-based solar irradiance fore-
casting models provide more promising performance than
physical and statistical methods. Several machine learning
models, such as artificial neural network [8], support vector
machine [5], extreme learning machine [14] are extensively
applied for solar irradiance forecasting to handle the nonlin-
ear relationship between input and output variables.

2 Contributions

This thesis focuses on using machine learning, deep learn-
ing and ensemble learning approaches for short-term, i.e.
hourly and daily solar irradiance forecasting. We analysed
the limitations of the state-of-the-art literature in this do-
main and proposed new techniques to address the identified
limitations and enhance the prediction accuracy. The main

research contributions of this thesis can be summarized as
follows:

2.1 Selection of important meteorological
parameters

We applied Artificial neural networks (ANNs) for daily solar
irradiance forecasting [9]. Fig. 2 represents the flowchart of
the proposed work. As using a large number of meteorologi-
cal variables for model development increases the computa-
tional cost unnecessarily, it is beneficial to identify the most
influential parameters. To conduct this study, a mountainous
state of Uttarakhand, India is selected in this work. Initially,
the ANN based GHI prediction models are developed with
different combinations of meteorological variables, which in-
cludes minimum temperature (T,,;,), maximum temperature
(Tinax), temperature difference (AT), GHI, extraterrestrial ra-
diation (HO), and bright sunshine hours (S). We developed
five types of ANN models (ANN-1 to ANN-5) with 32 in-
put combinations for daily GHI prediction. The models are
trained and tested on the data of one (i.e. Dehradun) out of
thirteen districts of Uttarakhand. The best performing ANN
model is selected from the 32 ANN models, which came
out to be ANN-3 trained with T,,,4x, Tnin, AT Further, this
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Figure 3. The schematic block diagram of proposed framework.

best ANN model is utilized for solar potential forecasting of
twelve remaining districts of the Uttarakhand.

2.2 Ensemble learning based prediction model

We developed a novel ensemble model (XGBF-DNN) for
hourly GHI forecast, which integrates extreme gradient boost-
ing forest and deep neural networks [11]. The framework
of the proposed methodology is demonstrated in Fig. 3. In
order to eliminate over-fitting, ridge regression is employed
to integrate the bas models. The diversity of base models is
also ensured in the proposed framework, as it is considered
as the key of efficient ensemble models. Further, the feature
selection is also performed and temperature, clear-sky index,
relative humidity, and hour of the day are considered as the
most important input features. To validate the performance
of the proposed ensemble model, the model is assessed on
three locations of India with different climate types, which
includes New Delhi, Gangtok and Jaipur. Moreover, in order

to give a profound understanding of the model’s characteris-
tics, a seasonal analysis is also conducted.

2.3 A deep hybrid spatio-temporal features based
prediction model

We proposed a novel deep learning based hybrid for hourly
GHI forecasting, named as LSTM-CNN [12]. Proposed model
integrates long short term memory (LSTM) and convolu-
tional neural network (CNN) model to extract the spatio-
temporal features from the data. The training of the model
is done using the meteorological data of 23 sites in Califor-
nia state, USA. The input features used to train the model
includes relative humidity, temperature, cloud cover, precip-
itation, pressure, etc. Initially, the data is pre-processed and
organized properly in two forms. Since, the future values
are highly influenced by the historical data, the historical
GHI data is prepared for LSTM model. Moreover, the meteo-
rological data of nearby locations also influences the solar
irradiance of target location. Therefore, the meteorological
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data of neighbour locations is also considered to extract the
spatial information from it. For this reason, the meteorologi-
cal data of target and its neighbour locations is utilized by
CNN model. The proposed hybrid LSTM-CNN model firstly
uses LSTM to extract the temporal features from historical
time-series of solar irradiance data, followed by CNN, which
extracts the spatial features from the correlation matrix of
several meteorological variables of target and its neighbour
location. The performance of the proposed model is rigor-
ously examined for an year, different seasons (summer, win-
ter, spring, autumn) and different sky conditions (sunny,
mixed, cloudy).

3 Future work

In future, we propose to apply several advanced machine
learning and deep learning-based GHI forecasting models
for different smart cities of India. For the proposed work, the
dataset of 21 cities, namely Agartala, Ahemdabad, Bhopal,
Bhubneshwar, Chennai, Coimbatore, Davangere, Diu, Guwa-
hati, Imphal, Indore, Jaipur, Kakinada, Kochi, Ludhiana, New
Delhi, Pune, Solapur, Surat, Udaipur and Vishakhapatnam
located in different climatic zones of India, selected under
"Smart cities mission" are used for training and testing of the
models. Based on the prediction accuracy of the developed
models for considered cities, we can select the most appro-
priate cities for installation of solar power plants on a large
scale. Alternative non-conventional energy resource projects
such as wind energy, tidal energy should be preferred at sites
where harnessing solar energy is not profitable due to unfa-
vorable weather conditions or inefficient future prediction.
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