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Abstract
Interpretation of Airborne Laser Scanning (ALS) point clouds,
specifically building roof modeling has many applications.
Existing methods do not generalize well across various roof
shapes, are time-consuming, and rely on manual interven-
tion across various stages like handcrafted feature gener-
ation, etc. In this study, we analyze deep learning-based
methods specifically by incorporating attention for various
roof modeling tasks including roof style classification, roof
retrieval, and damaged roof completion. The proposed net-
works achieve state-of-the-art (SOTA) results in roof model-
ing tasks while still maintaining competitive performance
in synthetic benchmark datasets. Our experiments indicate
that attention might be an even more natural fit for point
cloud processing due to its inherent permutation, cardinality
invariance.
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1 Introduction
Representation of ALS building roof point clouds has many
applications in Geographic Information Systems (GIS) [10,
20], Remote Sensing [10], Photogrammetry [10, 18] and,
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Computer Vision [2, 6, 7, 10, 14]. Existing methods for these
applications can be broadly classified into model-driven and
data-driven methods [15]. Model-driven methods utilize a
pre-defined catalog of basic roof shapes, from which the clos-
est matching model is selected but they strongly rely on prior
information about the roof style and require a vast collection
of building shapes as templates to generalize well [5, 6, 12].
Data-driven methods include geometric, Machine Learning
(ML), and more recently Deep Learning (DL) techniques.
Geometric methods utilize basic shapes such as planes to
best fit the input roof point cloud [4, 11] while ML meth-
ods process hand-crafted features through simple models
like random forest classifiers, etc [1, 9]. Both these methods
cannot generalize to a large set of complex roof shapes and
are time-consuming [16, 17, 19]. DL has shown great perfor-
mance across various computer vision tasks including deriv-
ing point cloud representations [8] and most methods focus
only on analyzing clean, aligned point clouds derived from
synthetic CAD models. ALS point clouds contain various
imperfections like noise, outliers, missing regions, sparsity,
and existing methods need not showcase strong performance
in these cases [3]. Therefore, there is a strong requirement
to understand the effectiveness of deep learning for ALS
applications, and also propose robust models which work
well in real and synthetic benchmarks.

Inspired by the recent success of attention across various
Natural Language Processing tasks, our study focuses on
incorporating attention to complement existing networks
and also introduces full-blown attention-based networks
for classification, retrieval, and shape completion of point
clouds. Our key motivation is that attention is a set operator
making it appropriate for processing point clouds as they
are permutation and cardinality invariant. We performed
detailed robustness tests to evaluate the effectiveness of the
proposed methods and ensure that they are computationally
efficient for real-time processing. The remainder of this re-
port is structured as follows - Section. 2 briefly discusses the
three proposed methods, Section. 3 describes key results and
inferences, and finally Sections. 4, 5 concludes and suggests
scope for future work.
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(a) MVCNN with Self Attention for Shape
Classification

(b) Point Transformer for Shape Classification (c) Point Completion Transformer for Shape
Completion

Figure 1. A brief overview of methods proposed in this report. (The figures do not show roof point clouds as their intricate
geometries are difficult to visualize as a 2D image.)

2 Proposed Methods
To set some preface, we first introduce attention in subsec-
tion. 2.1 and then briefly describe the three proposed meth-
ods - Multi-view Convolutional Neural Network with Self
Attention (MVCNN-SA), Point Transformer (PT), Point Com-
pletion Transformer (PCT) in the following three subsections
2.2, 2.3 and 2.4 respectively.

2.1 Attention
Attention was first proposed for NLP, where the goal is to fo-
cus on a subset of important words. Consequently, relations
between inputs are highlighted that can be used to capture
context and higher-order dependencies. The attention ma-
trix𝐴(.) indicates a score between 𝑁 queries𝑄 and 𝑁𝑘 keys,
which indicates which part of the input sequence to focus
on. 𝜎 (.) is an activation function (generally 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (.)).

𝐴(𝑄,𝐾) = 𝜎 (𝑄𝐾𝑇 ) (1)

To capture the relations among the input sequence, the values
𝑉 are weighted by the scores from Equation 1. Therefore, we
have

SelfAttention(𝑄,𝐾,𝑉 ) = 𝐴(𝑄,𝐾) ·𝑉 (2)
A key property of the self-attentionmodel described above

is that it is equivariant to the input order, i.e. it gives the
same output independent of how the 𝑁 input tokens are
shuffled. As mentioned above, this is the primary motivation
for our work.

2.2 View-based Shape Classification and Retrieval
Point clouds in their rawXYZ format are irregular, unordered
and therefore researchers have tried to convert these point
clouds into more regular representations like voxels, images.
These view images are created by projecting a point cloud
onto various planes around it and they are passed onto a
image feature extractor to derive view features. These view
features are then pooled to create the final shape descriptor
used to predict classes. However, existing methods do not
consider the relative importance of each view which can
affect the performance of the model (Eg: given 10 views for a
roof point cloud, there might exist some views which contain

occlusions, missing regions, roof structures projected in a
deformed manner onto a single plane which can all confuse
the model).
Therefore in this work, we primarily focus on two prob-

lems: evaluating if deep learning is suitable for ALS point
cloud representation, incorporating attention to derive view-
wise feature importance, and create the final shape descriptor
dynamically. This is done using a simplified attention opera-
tion that derives only𝐾 and𝑉 vectors from the view features.
The obtained 𝐾 vectors are softmax normalized to derive
view-wise importance values which are then multiplied with
the𝑉 and added to derive the final shape representation. This
helps derive richer shape descriptors which are reflected in
the improved shape classification and retrieval performance
discussed in subsection. 3.1.

2.3 Point-based Shape Classification and Retrieval
In this work, we would like to explore and confirm our hy-
pothesis that attention can act as a core operator in point
cloud representation methods by proposing a fully atten-
tional network. As discussed in subsection. 2.1, in NLP each
element in the sequence corresponds to a word and the same
idea is applicable for a sequence of N discrete objects, like
points in a point cloud. However, due to a large number of
elements in this sequence (>1000 points in a point cloud),
naively applying attention can lead to over-parametrization
or sparse attention matrices. Additionally, existing works in
NLP like [13] have shown that directly applying pooling on
the derived point-wise features after attention can lead to
poor performance.
Therefore, we propose a novel iterative transformer that

shares parameters across multiple blocks, and only the 𝐾 , 𝑉
vectors are updated while the𝑄 vector is kept the same. This
leads to a sequential feature learning procedure similar to
an unfolded Recurrent Neural Network. It helps capture hi-
erarchical features without over-parametrizing the network.
Additionally, we introduce a dynamic grouping module that
routes the points into corresponding region-specific groups
(in a learnable fashion) and creates group-wise feature vec-
tors. These group-wise feature vectors are then aggregated
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to create the final shape descriptor used for classification
and retrieval. The proposed method showcases improved
performance in both synthetic, real benchmarks with much
fewer parameters. The learnable nature of all the operations
leads to improved robustness and is evaluated and discussed
in subsection. 3.2.

2.4 Point-based Shape Completion
Inspired by the success of our previous work PT, we attempt
to solve a more complex problem of shape completion us-
ing a fully-attention network. Most existing methods use a
standard point-based backbone (eg: PointNet, PointNet++)
and derive global features which are then used to create
the final point cloud using a series of folding blocks and/or
MLPs. However, they fail to retain local geometric informa-
tion, i.e given four distinctly unique chairs in the dataset,
autoencoders tend to "average" these shapes and produce
a common structure that can minimize loss against all the
samples. Further, they do not reconstruct corners, edges,
thin lines effectively and produce a lot of noise. This can be
problematic in the case of roofs as they are primarily com-
posed of such simple geometric shapes and the presence of
noise/outliers can confuse these models to think that there
exists some shape in these regions.

Therefore, we propose a novel architecture first by modi-
fying attention to a strictly local operation by forcing each
point to focus only on its immediate neighborhood. This
helps derive stronger features describing each local geom-
etry when compared to other methods. The partial point
cloud is sequentially downsampled and multi-resolution fea-
tures are extracted using a stack of local attention blocks in
the encoder. The final extracted feature is used to derive a
coarse complete point cloud which undergoes a series of up-
sampling operations in the decoder. After each up-sampling
operation, the generated point cloud is corrected using cues
derived from the encoder which is used to guide the decoder
to reconstruct a complete point cloud coherent to the input
partial shape. Finally, to uniformly redistribute the points
obtained in the complete point cloud, a refinement block is
added to get the final output. The results are discussed in
brief in subsection. 3.3.

3 Results and Discussion
In this section, we highlight key results and inferences from
the proposed methods. Due to space constraints, we cannot
describe every result in detail in this report and urge the
readers to read the corresponding papers associated with
the proposed methods. For the shape classification, retrieval
experiments, we use the RoofN3D dataset: contains roof
instances from a large-scale urban ALS scan of New York
city and popular synthetic benchmarks ModelNet40, Robust-
PointSet. For the shape completion experiments, we use a

damaged set derived from the RoofN3D dataset and synthetic
benchmark Completion3D.

3.1 View-based Shape Classification and Retrieval
Due to no prior work in view-based shape classification in
ALS roof point clouds, we first set up a baseline using a sin-
gle view ResNet classifier, followed by a multi-view ResNet
classifier. Then we incorporate our proposed method and it
achieves 1.24% higher classification scores and 6.14 higher
Mean Average Precision (MAP) in shape retrieval when
compared to existing methods in the RoofN3D dataset. The
higher retrieval scores indicate that the extracted features
are more descriptive. To empirically validate the effective-
ness of our view-wise pooling technique we compare with
other naive strategies like max-pooling and mean-pooling.
Further, we try to mimic these naive pooling strategies us-
ing our view-wise pooling methods by including entropy
and produce diffuse (mean-pooling) and concentrated (max-
pooling) importance weights. Both these experiments yield
lower performance which clearly indicates that learning
view-wise relevance is important to derive a better shape
representation.

3.2 Point-based Shape Classification and Retrieval
Sincewe are exploring a new design space i.e fully attentional
model, we also evaluate the performance of the proposed
method on the standard benchmark dataset ModelNet40.
PT achieves 1.26% higher accuracy in the roof classification
task and 6.54 higher MAP scores when compared to existing
methods. It is important to note that RoofN3D has a limited
number of classes and is highly imbalanced (since it’s a real
dataset) and therefore it is expected that there won’t be a
major improvement from MVCNN-SA to PT in the RoofN3D
dataset. However, in the benchmark ModelNet40 dataset,
PT achieves 92.5% accuracy in the shape classification task,
88.4 MAP in the retrieval task, and performed better than
SOTA graph-based and other attention-based methods. Ad-
ditionally, to evaluate robustness, we perform detailed ex-
periments on the RobustPointSet dataset where the model
is tested on unseen input corruptions and PT stood out as
the best performing method achieving 62.5% average accu-
racy. We perform a similar set of experiments in RoofN3D
and PT outperformed existing methods by 3.57% in average
accuracy across various corruptions in roof classification
while maintaining a 90.77 MAP score in partial shape roof
retrieval.

3.3 Point-based Shape Completion
In this work, to fully evaluate the model, we test the model
on both RoofN3D and benchmark dataset Completion3D.
PCT showcased better performance by achieving 24 × 104
chamfer distance in roof completion and 12× 104 in Comple-
tion3D. We want to point out that the given metric - chamfer
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distance is not ideal to evaluate the quality of reconstruc-
tion. Chamfer distance does not penalize the model based
on its ability to retain local geometric information, and it
is sufficient to predict the overall geometry. We strongly
believe this is one of the reasons our method does not beat
SOTA methods in Completion3D while still producing better
visual results. However, we could have used more accurate
metrics like Earth Movers Distance (EMD) but due to compu-
tational challenges and its behavior to approximate at higher
resolutions, we choose not to (refer to known bugs in issue).

4 Future Work
• In this thesis, we explored attention - as a complimen-
tary sub-layer or as a core operation in a fully-attention
network in three tasks - classification, retrieval, and
shape completion. However, its complete effectiveness
is not yet explored for various other tasks - like seg-
mentation, noise removal, etc.

• Additionally, this method can also be extended for
larger point sets - aerial city scene, driving lidar scans,
etc., for tasks applicable for autonomous vehicles.

• Our proposed methods were seen to be inherently ro-
bust to various unseen transformations, and this can
be further improved, especially in the case of rotation,
by introducing an orientation invariant input repre-
sentation (like distance and polar angles).

• One of the major bottlenecks in attention is the scalar
dot product operation which has an 𝑂 (𝑁 2) time com-
plexity, and reducing the same to lower orders like
𝑂 (𝑁 ) is still an open research problem.

5 Conclusion
This thesis is perhaps the foremost research for applying
DL to derive efficient representations for ALS roof point
clouds. We also highlight areas that are less looked upon like
the choice of pooling operations to derive shape descriptors
and how important modifications in these operations lead
to improved performance. We hypothesize and showcase
that attention can be a better operator to derive point cloud
representations due to their inherent set-like properties. We
explore new design considerations like sharing parameters
across layers and only updating some of the outputs of each
layer. This raises important questions - do we actually need
multiple independent layers in large transformer models
which is extremely relevant not just in the case of point
clouds but in NLP and other vision topics as well. We also
showcase how simple modifications to attention can convert
it from a global to a more locally activated operation. This
can help solve more challenging problems which require
such local biases like generation, detection, segmentation,
etc. The proposed networks show strong performance on
synthetic benchmarks and real datasets, which need not
be the case always. We hope this inspires future works to

also evaluate using similar strategies to fully understand the
effectiveness of their methods.

6 Publications
The following are the publications which are the outcome
of this research work:

1. Roof Classification from 3D LiDAR Point Clouds using
Multi-view CNN with Self-Attention
IEEE Geoscience and Remote Sensing Letters; Sibgrapi
2019

2. Point Transformer for Shape Classification and Re-
trieval of Urban Roof Point Clouds
IEEE Geoscience and Remote Sensing Letters

3. Point Completion Transformer for Shape Completion
of ALS Roof Point Clouds
In submission
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